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15.095: Machine Learning under a modern Optimization Lens

1. Background and Obijectives

= The Data Science BowlI® is the world’s premier data science for social good
competition, it brings together experts across industries to take on the world’s
challenges with data and technology

= The 2019 edition partners with PBS KIDS, a trusted name in early childhood
education (3-5 years old), who aims to gain insights on how media can help
children learn important skills for success in school and life

» Based on historical data from its app PBS KIDS Measure UP!, the challenge
focuses on predicting scores on in-game assessments and understanding
how to improve learning outcomes
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2. Data

» The dataset contains timestamp data from the app activity of approximately
17,000 kids, divided into different sessions (~300k) and events (~11M)

= Some of the sessions are Assessments, in which the kid must complete an
evaluation task related to some measurement concept (length, weight...)

» The goal is, given incomplete information of a kid’'s actions, predict how well
he/she will do in an Assessment, by classifying him/her into one out of 4
performance groups
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3. Feature Engineering

» For each player (installation ID), we create different instances that include all
previous events of that player until the beginning of every completed

assessment
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= We clean and enrich the data by:

|.  Getting rid of the players who haven’t completed any assessment

Il. Using completed assessments in the test data as part of the training
dataset

1.

assessments

= \We then extract the following features for each instance:

Assessment-related features (how hard the assessment is)
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assessment world
Player-related features (how good the player is)
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Creating a function that computes the classification label for completed

4. Performance results

= We test OCT and OCT-H models with and without class autobalance and compare its out-of-sample

performance with logistic regression and xgboost

Model

With autobalance

Without autobalance

Python-based

Metric OCT OCT-H O0OCT OCT-H Logistic regression xgboost
Accuracy 0.569 0.548 0.620 0.633 0.602 0.607
Quadratic kappa 0.473 0.490 0.514 0.540 0.501 0.472

= Models with autobalance provide more interpretable solutions at the expense of predictive power
= OCT-H without autobalance proves to be the best model in terms of out-of-sample performance,

surpassing xgboost and scoring top 3% in the official competition

Interpretability

= OCT with autobalance makes a decision based on which assessment, the player’s experience on that

assessment and the overall performance of the player

= OCT without autobalance includes the assessment average difficulty and specific event performance
= Both OCT models are able to identify the hardest assessments
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