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1. Background and Objectives 
§ The Data Science BowlⓇ is the world’s premier data science for social good 

competition, it brings together experts across industries to take on the world’s 
challenges with data and technology

§ The 2019 edition partners with PBS KIDS, a trusted name in early childhood 
education (3-5 years old), who aims to gain insights on how media can help
children learn important skills for success in school and life

§ Based on historical data from its app PBS KIDS Measure UP!, the challenge 
focuses on predicting scores on in-game assessments and understanding
how to improve learning outcomes

2. Data
§ The dataset contains timestamp data from the app activity of approximately 

17,000 kids, divided into different sessions (~300k) and events (~11M)
§ Some of the sessions are Assessments, in which the kid must complete an 

evaluation task related to some measurement concept (length, weight…)
§ The goal is, given incomplete information of a kid’s actions, predict how well

he/she will do in an Assessment, by classifying him/her into one out of 4 
performance groups

3. Feature Engineering
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§ For each player (installation ID), we create different instances that include all 
previous events of that player until the beginning of every completed 
assessment
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§ We clean and enrich the data by:
I. Getting rid of the players who haven’t completed any assessment
II. Using completed assessments in the test data as part of the training 

dataset 
III. Creating a function that computes the classification label for completed

assessments

§ We then extract the following features for each instance:
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§ Final dataset:  
n = ~23.5k,   p = 129, k = 4 
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4. Performance results
§ We test OCT and OCT-H models with and without class autobalance and compare its out-of-sample 

performance with logistic regression and xgboost

§ Models with autobalance provide more interpretable solutions at the expense of predictive power
§ OCT-H without autobalance proves to be the best model in terms of out-of-sample performance, 

surpassing xgboost and scoring top 3% in the official competition 

§ OCT with autobalance makes a decision based on which assessment, the player’s experience on that 
assessment and the overall performance of the player

§ OCT without autobalance includes the assessment average difficulty and specific event performance
§ Both OCT models are able to identify the hardest assessments

Interpretability


